Index

Page numbers in italics refer to Figures.

aeromagnetic anomaly, Haymana Basin 94–95
Ahmadi Formation 218–219, 220, 2214
Albian see Arabian Plate petroleum reservoirs
alignment in quartz cement
methods of analysis 54–55
results 55
results discussed 55–61
Allan diagrams 199
analogue modelling for reservoirs 65–66
core analogues in UKCNS 131–133
outcrop analogues
Arabian Gulf reservoirs 3, 4, 5
Oman 5
facies associations 5–6
facies modelling 12–14, 15
marker beds 10
reservoir architecture 10–12
sequence stratigraphy 6–10
Sant Llorenç del Munt fan delta
responses 73–77
results discussed 77–87
stratigraphy 70–73
Anaran Anticline see Zagros fold-and-thrust belt
Anatolia, Central see Haymana Basin
ant tracking 167, 174, 176
Aptian see Arabian Plate petroleum reservoirs
Arabian Gulf, reservoirs 3, 4
Arabian Plate petroleum reservoirs 207–209
carbonate-siliciclastic systems 211–212
diagenesis
burial 229–231, 236–237
marine 226–228, 232–233
meteoric 228–229, 233–236
depositional systems
Aptian–Albian 212–216
Cenomanian–Turonian 216–218
reservoir quality 231–232
diagenetic impact 237–238
tectonostratigraphy 223–226
Atlantic Ocean see Irish Atlantic Margin
Azeri–Chirag–Gunashli (ACG) Field (South Caspian Basin) 143–144
Pereiv Suit reservoir
modelling
methodology 148–152
results 153–157
results discussed 158–162
sedimentology 144–148
backscattered electron (BSE) imaging 116
Bacton Group 195
Bangestan Group 279
basin-centred gas accumulation see Makó Trough
biostratigraphy, Cretaceous petroleum systems 214, 219
Bunter Sandstone Formation 195
Bunter Shale Formation 195
Burgan Sandstone see Kazhdumi Formation
burial and mudstone compaction
quartz cementation 53–54
methods of analysis 54–55
results 55
results discussed 55–61
capillary pressure 115, 117–118, 122, 123
capillary seal capacity
hydrodynamics 397–399
estimation
methods 399–401
results 401–403
flow-governing equations 399
carbon dioxide storage 181
fault seal studies 182–183
Troll Field 183–185
potential column heights 185–188
stress and leakage 188–191
seal integrity of South Permian Basin 193–194
Fizzy trap 194, 195–197, 199–200
Oak trap 197, 200–201
carbonate facies see Arabian Plate; Natih Formation (Natih B Member)
reservoir modelling 284, 300–306
Caspian Basin see Azeri–Chirag–Gunashli (ACG) Field
Cenomanian see Arabian Plate petroleum reservoirs
Chalk Group 195
channelized reservoir modelling
shale drapes 19–22
history matching 23–26
workflow testing 26–33
turbidites 35–36
connectivity in 3-D 37–38
data integration 40–42
field application 42–50
pseudoization algorithm 39–40
UKCNS, Nelson Field 134, 135–140
stratigraphic elements 36–37
clay minerals, as quartz source 53–54
clay–sand lithologies, rock physics modelling 347–351
compaction in mudstones
quartz cementation 53–54
methods of analysis 54–55
results 55
results discussed 55–61
connectivity in modelling 37–38
Connemara discovery see Irish Atlantic Margin
Cretaceous petroleum systems see Arabian Plate; Natih B Member
Cromer Knoll Group 195
cut-offs
defined 355
Kazhdumi Formation 358–359
Danish North Sea see Nini Field
diagenesis see Arabian Plate, carbonate facies; mudstones, quartz cementation; Natih Formation, Natih B Member
diapirism see salt diapirism
dolomitization 228, 229–231
Zagros Mts Sarvak formations
characterization 291–292
distribution 287–291
Donegal Basin 381
effective permeability see permeability
Eocene see Horda Formation; Sant Llorenç del Munt fan delta
Erris Basin 381
facies modelling
Oman reservoirs 12–14, 15
Nelson Field (UKCNS) 134, 135–140
see also fan deltas, modelling
fan deltas
modelling 65–66
Sant Llorenç del Munt
responses 73–77
results discussed 77–87
sequence description 66–70
stratigraphy 70–73
turbidites, channels in reservoirs 35–36
collectors in 3-D 37–38
data integrations 40–42
field applications 42–50
pseudoization algorithm 39–40
stratigraphic elements 36–37

mudstones
quartz cementation 53–54
methods of analysis 54–55
results 55
results discussed 55–61

Natih Formation
architectural elements 311–312
calinoform quantification 315–319
digital outcrop modelling 312–315
model discussed 322–330
geological setting 310–311
outcrops 312
sequence stratigraphy 311
static v. dynamic model 319–322
stratigraphic elements 245–246
Natih B Member
methods of analysis 247–248
mineralogy 248–249
petrography 248
results
lithofacies 249–250
A 250–255
B 255–257
results discussed 257–258

Nelson Field (UKCNNS)
core analogue study 131–133
drill cuttings study 131
facies modelling
methods 134, 135
results 135–140
geological setting 127–129
petrophysical data 134
seismic data 129–131
net pay 356
net-to-gross, defined 355
Newark Basin 381
Newfoundland Basin 381
Nini Field (North Sea)
geological setting 113
petrophysical evaluation
methods 114–116
results 117–118
results discussed 118–123
NMR see nuclear magnetic resonance
North Dome Field 3, 4
North Sea
Denmark see Nini Field
Norwegian see Voring Basin
UK see Nelson Field
see also Southern Permian Basin
Norwegian Continental Shelf see Troll Field also Voring Basin
nuclear magnetic resonance (NMR) 111–113
use in reservoir evaluation
methods 116
results 118
results discussed 118–123

Oak trap 197, 200–201
Oman, Sultanate of see Mahil Formation; Natih Formation (Natih B member); Saïq Formation
outcrop analogues
Arabian Gulf reservoirs 3, 4, 5
outcrop analogues in Oman 5
facies associations 5–6
facies modelling 12–14, 15
marker beds 10
reservoir architecture 10–12
sequence stratigraphy 6–10
overpressure, development of 60–61

Palaeogene see Horda Formation
Pannonian Basin see Makó-Trough
Pereriv Suite see Azeri-Chirag-Gunashi Field

permeability
estimation of effective
method 397, 399–400
results 401–403
Kazhdumi Formation 359–362
Nini Field evaluation 113, 114, 117, 120–121
Permian see Saïq Formation
Persian Gulf see Hormuz, Straits of; Kazhdumi Formation
physics see rock physics
PLF (porosity, lithology, fluid domain) 345, 346, 349, 351, 353
Poisson’s ratio 339
Porcupine Basin see Irish Atlantic Margin
pore volume multiplier 340–342
porosity
Nini Field evaluation 112, 113, 114, 117, 118, 122
PLF (porosity, lithology, fluid domain) 345, 346, 349, 351, 353
quartz cement in mudstones
introduction 53–54
methods of analysis 54–55
results 55
results discussed 55–61
Rayleigh waves 170
remote sensing 168–169
reservoir analogues 65–66
modelling
Sant Llorenç del Munt fan delta
responses 75–77
results discussed 77–87
stratigraphy 70–73
reservoir architecture
modelling for shale drapes 19–22
history matching 23–26
workflow testing 26–33
modelling for turbidites 35–36
connectivity in 3-D 37–38
data integrations 40–42
field applications 42–50
pseudoization algorithm 39–40
stratigraphic elements 36–37
Oman 10–12
reservoir characterization, role of rock physics 345–346
reservoir cut-off optimization
Kazhdumi Formation 356–357
cut-off calculation 358–359
permeability 359–362
petrophysical evaluation 357–358
reservoir evaluation see nuclear magnetic resonance
reservoir modelling
fractured dolomite 284, 300–306
see also reservoir architecture also reservoir simulation
reservoir properties see Arabian Plate, carbonates facies
reservoir quality
seismic velocity processing problems
methods of analysis 386–390
results 390–394
reservoir simulation
Pereriv Suite reservoir modelling
methodology 148–152
results 153–157
results discussed 158–162
reservoir stress evolution see stress evolution
rock physics models
case studies
clay–rock sandstone 350–351
clay–sand composite 347–350
case study review 351–353
introduction 345–346
procedure review 346–347
Rockall Trough 381
Rotliegend Group 194, 195, 197
Southern North Sea
seismic velocity processing problems
methods of analysis 386–390
results 390–394

Safaniya Formation 214, 218–219, 219–220
Saïq Formation 5
facies associations 5–6
facies modelling 12–14, 15
marker beds 10
reservoir architecture 10–12
sequence stragigraphy 6–10
salt diapirism
 classification 101
 Strats of Hormuz 101–103
 Fars and Hormuz salt 104–105
 geometry 103–104
 passive salt growth 105–106
salt-induced stress anomaly 390–391, 394
sand-clay lithologies, rock physics modelling 347–351
Sant Llorenç del Munt fan delta
 modelling
 responses 73–77
 results discussed 77–87
 sequence description 66–70
Salt formations 285–286, 287
 dolomite characterization 291–292
 dolomite distribution 287–291
 fracture network 295–300
 outcrop-based modelling 286–287
 reservoir modelling 300–306
 stratigraphy 285–286
 vug porosity 292–295
satellite imagery 168–169
seismic imaging
 near-surface 169–174
salt diapirs 103–106
seismic sections
 Connemara discovery 371, 374, 375, 376, 379
 Haymana Basin 95–96, 97
seismic velocity anomalies
 methods of analysis 386–390
 results 390–394
sequence stratigraphy
 Cretaceous petroleum systems 215, 219
 Saq a bd Mahil formations 6–10
shale anisotropy 60–61
shale drapes 17–18
 modelling 23, 43–44
shale gas see Makó Trough
shale gouge ratio (SGR) 182–183, 186, 187
shale lithologies, rock physics modelling 347–351
short offset refractions 171–173
Simply Folded Belt see Zagros fold-and-thrust belt
Slyne Basin 381
 source rocks see Natih B Member
South Caspian Basin see Azeri–Chirag–Gunashli (ACG) Field
South Pars Field 3, 4
Southern Permian Basin
 Dutch sector
 seismic velocity variations
 methods of analysis 386–390
 results 390–394
 fault block geometry 197–199
 Fizzy trap 199–200
 Oak trap 200–201
 setting 194–197
Spain see Sant Llorenç del Munt
 specific surface area 114, 119
stress
 evolution in reservoirs 335–336
 path parameters 336–337
 factors affecting 337–340
 influence on fluid flow 340–342
stress arching 337–338
 stylolites 274, 276
Tuez, Gulf of see Gulf of Suez Rift
 surface relaxivity 112–113, 119–120
tight gas see Makó Trough
time-to-depth conversion see seismic velocity anomalies
Triassic see Mahil Formation
Triassic
 Southern North Sea
 seismic velocity anomaly
 methods of analysis 386–390
 results 390–394
Troll Field (Norway), CO₂ storage project 183–185
turbidites see Horda Formation also channelized turbidite reservoir
Turkey see Haymana Basin
Turonian see Arabian Plate petroleum reservoirs
Ty Formation 113

UKCNS see Nelson Field
UKSNS see Southern Permian Basin
velocity anomaly see seismic velocity
Voring Basin (Norway)
 quartz cementation study
 methods 54–55
 results 55
 results discussed 55–61
Wara Formation 214, 218–219, 220
 West Africa, channelized reservoir modelling 26–27, 42–50
Young’s modulus 338
Zagros fold-and-thrust belt 101–103, 264–265
 modelling Sarvak formations
 methods 286–287
 observations
 dolomite characterization 291–292
 dolomite distribution 287–291
 fracture network 295–300
 stratigraphy 285–286
 vug porosity 292–295
 reservoir model results 300–306
Simply Folded Belt, sub-seismic fracture study
 methods of analysis 265–267
 modelling 276–280
 results 267–268
 faults 268–270
 opening mode fractures 270–274, 276
 stylolites 274, 276
 timing, faults 274–276
Zechstein Group 194–195
Conference Announcement

International Conference on the Geology of the Arabian Plate and the Oman Mountains (ICGAPOM) 7-9 January 2012

The Department of Earth Science, Sultan Qaboos University, is situated in close proximity to the Oman Mountains and has for the past 25 years been actively involved in advancing geological knowledge of the Arabian Peninsula in general and the Oman Mountains in particular. Progress in this understanding has been reviewed during two previous geological conferences on the Oman Mountains in 1990 and 2001, with attendance by delegates from 37 countries. In order to review new developments during the last ten years and to promote ongoing geological research, the department is organizing a third conference in this series for 2012.

This conference will present the latest developments across a broad spectrum of Earth-science disciplines, including sedimentary and hard-rock geology, the base and precious metals industry, petroleum geology, ground-water, geophysics, and geohazards. The conference is intended to be a broader consideration of not only the geology of Oman but also the entire Arabian Plate.

Conference Objectives

The overall objective of the 2012 conference is to gather Earth scientists from all parts of the world to encourage research and promote better understanding of the geology, economic potential, and environment of the Arabian Plate and Oman Mountains. The specific objectives of the conference are:

1) To provide a forum for presenting recent research on the geologic framework of the Arabian Plate.
2) To encourage the exchange of knowledge, ideas and experiences between scientists regarding the geological evolution of the region.

The conference will be held at the Sultan Qaboos University over 3 days. Pre- and post conference field excursions will be organized.

In a number of Keynote addresses international experts will summarize recent developments in the geological understanding of the Arabian Peninsula and the Oman Mountains. Oral and poster presenters will share their research results in a diverse range of thematic sessions.

Technical Themes

1. The Arabian Plate Lithosphere and Boundaries
2. The Sedimentary Cover of the Arabian Plate
3. Hydrocarbon Systems of Arabia
4. Ophiolite Genesis and the Oman Mountains
5. Environment and Water Resources

Correspondence and abstract submission

For further information, please visit the conference website (http://www.geoman2012.com) or contact Dr. Iftikhar Ahmed at es@squ.edu.om

Department of Earth Sciences,
College of Science, P.O.Box 36
123- Al Khod,
Sultan Qaboos University, Sultanate of Oman

GEOLOGICAL SOCIETY OF OMAN
www.gso.org.om

Silver Sponsorship
Petroleum Geoscience

*Editor-in-Chief: P A F Christie
Co-Editors: A J Fraser, A H Muggeridge, J R Underhill & P F Worthington*

- Volume 17
- Number 4
- November 2011

EAGE

Published by the Geological Society Publishing House for the European Association of Geoscientists & Engineers and the Geological Society, London

BroadSeis

A powerful new broadband marine solution

BroadSeis™ extends the bandwidth to both low and high frequencies by eliminating receiver ghost notches*. 3D BroadSeis provides broadband resolution and rich stratigraphic texture for stunning images with amazing structural detail.

BroadSeis is the **Safer, Broader and Better** solution that redefines the limits of seismic data clarity.

*Patents pending

CGGVeritas

Get to Know Our SeisAble Benefits

CGGVeritas.com/broadseis

- **Stress path impact on fluid flow simulation**
- **Inverse rock physics modelling for model selection and calibration**
- **Optimizing reservoir cut-off parameters in SW Iran**
- **Insights on hydrocarbon prospectivity in the Irish Atlantic Margin**
- **Halokinetic stress effects on exploration in the Dutch Permo-Triassic**
- **Estimating hydrodynamic impact on capillary-limited petroleum traps**
- **Unconventional gas in the Pannonian Basin**