Skip to main content

Main menu

  • Home
    • Journal home
    • Lyell Collection home
    • Geological Society home
  • Content
    • Online First
    • Issue in progress
    • All issues
    • Thematic Collections
    • Supplementary publications
    • Open Access
  • Subscribe
    • GSL fellows
    • Institutions
    • Corporate
    • Other member types
  • Info
    • Authors
    • Librarians
    • Readers
    • GSL Fellows access
    • Other member types access
    • Press office
    • Accessibility
    • Help
    • Metrics
  • Alert sign up
    • eTOC alerts
    • Online First alerts
    • RSS feeds
    • Newsletters
    • GSL blog
  • Submit
  • Geological Society of London Publications
    • Engineering Geology Special Publications
    • Geochemistry: Exploration, Environment, Analysis
    • Journal of Micropalaeontology
    • Journal of the Geological Society
    • Lyell Collection home
    • Memoirs
    • Petroleum Geology Conference Series
    • Petroleum Geoscience
    • Proceedings of the Yorkshire Geological Society
    • Quarterly Journal of Engineering Geology and Hydrogeology
    • Quarterly Journal of the Geological Society
    • Scottish Journal of Geology
    • Special Publications
    • Transactions of the Edinburgh Geological Society
    • Transactions of the Geological Society of Glasgow
    • Transactions of the Geological Society of London

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Petroleum Geoscience
  • Geological Society of London Publications
    • Engineering Geology Special Publications
    • Geochemistry: Exploration, Environment, Analysis
    • Journal of Micropalaeontology
    • Journal of the Geological Society
    • Lyell Collection home
    • Memoirs
    • Petroleum Geology Conference Series
    • Petroleum Geoscience
    • Proceedings of the Yorkshire Geological Society
    • Quarterly Journal of Engineering Geology and Hydrogeology
    • Quarterly Journal of the Geological Society
    • Scottish Journal of Geology
    • Special Publications
    • Transactions of the Edinburgh Geological Society
    • Transactions of the Geological Society of Glasgow
    • Transactions of the Geological Society of London
  • My alerts
  • Log in
  • My Cart
  • Follow gsl on Twitter
  • Visit gsl on Facebook
  • Visit gsl on Youtube
  • Visit gsl on Linkedin
Petroleum Geoscience

Advanced search

  • Home
    • Journal home
    • Lyell Collection home
    • Geological Society home
  • Content
    • Online First
    • Issue in progress
    • All issues
    • Thematic Collections
    • Supplementary publications
    • Open Access
  • Subscribe
    • GSL fellows
    • Institutions
    • Corporate
    • Other member types
  • Info
    • Authors
    • Librarians
    • Readers
    • GSL Fellows access
    • Other member types access
    • Press office
    • Accessibility
    • Help
    • Metrics
  • Alert sign up
    • eTOC alerts
    • Online First alerts
    • RSS feeds
    • Newsletters
    • GSL blog
  • Submit

Trap Analysis: an automated approach for deriving column height predictions in fault-bounded traps

Peter Bretan
Petroleum Geoscience, 23, 56-69, 30 September 2016, https://doi.org/10.1144/10.44petgeo2016-022
Peter Bretan
Badley Geoscience Ltd, North Beck House, North Beck Lane, Hundleby, Spilsby, Lincolnshire PE23 5NB, UK
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: pete@badleys.co.uk
PreviousNext
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Column height predictions are often displayed as attributes on fault-plane profiles. However, fault-plane profiles are difficult to interpret when derived from multiple faults that bound a trap. An automated approach, termed Trap Analysis, permits the rapid analysis of column height predictions using the deterministic fault-seal analysis method.

For column height predictions to be meaningful, all faults that contribute to the sealing of hydrocarbons within a trap must be analysed as one coherent structural element. Hydrocarbon column height data at key reservoir juxtapositions on all faults that bound a trap are simultaneously interrogated to derive the unique location of the weakest point on the fault seal, termed Fault Leak Point (FLP). The FLP is trap-critical if it supports a column with a contact that is shallower than the trap's structural spill point.

The Trap Analysis approach enables sensitivity studies to be routinely undertaken. The predicted weakest point on a fault seal, and hence, the column height supported at that point, can depend on the calibration used to transform shale gouge ratio (SGR) to threshold capillary pressure, and on the density contrast between the buoyant and water phases.

  • © 2017 The Author(s)
View Full Text

Please note that if you are logged into the Lyell Collection and attempt to access content that is outside of your subscription entitlement you will be presented with a new login screen. You have the option to pay to view this content if you choose. Please see the relevant links below for further assistance.

INDIVIDUALS

Log in using your username and password

– GSL fellows: log in with your Lyell username and password. (Please check your access entitlements at https://www.geolsoc.org.uk/fellowsaccess)
– Other users: log in with the username and password you created when you registered. Help for other users is at https://www.geolsoc.org.uk/lyellcollection_faqs
Forgot your username or password?

Purchase access

You may purchase access to this article for 24 hours and download the PDF within the access period. This will require you to create an account if you don't already have one. To download the PDF, click the 'Purchased Content' link in the receipt email.

LIBRARY USERS

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.
If you think you should have access, please contact your librarian or email sales@geolsoc.org.uk

LIBRARIANS

Administer your subscription.

CONTACT US

If you have any questions about the Lyell Collection publications website, please see the access help page or contact sales@geolsoc.org.uk

PreviousNext
Back to top

In this issue

Petroleum Geoscience: 23 (1)
Petroleum Geoscience
Volume 23, Issue 1
February 2017
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Front Matter (PDF)
Alerts
Sign In to Email Alerts with your Email Address
Citation tools

Trap Analysis: an automated approach for deriving column height predictions in fault-bounded traps

Peter Bretan
Petroleum Geoscience, 23, 56-69, 30 September 2016, https://doi.org/10.1144/10.44petgeo2016-022
Peter Bretan
Badley Geoscience Ltd, North Beck House, North Beck Lane, Hundleby, Spilsby, Lincolnshire PE23 5NB, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: pete@badleys.co.uk

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Permissions
View PDF
Share

Trap Analysis: an automated approach for deriving column height predictions in fault-bounded traps

Peter Bretan
Petroleum Geoscience, 23, 56-69, 30 September 2016, https://doi.org/10.1144/10.44petgeo2016-022
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Email to

Thank you for sharing this Petroleum Geoscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Trap Analysis: an automated approach for deriving column height predictions in fault-bounded traps
(Your Name) has forwarded a page to you from Petroleum Geoscience
(Your Name) thought you would be interested in this article in Petroleum Geoscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
Download PPT
  • Tweet Widget
  • Facebook Like
  • Google Plus One
  • Article
    • Abstract
    • Trap Analysis workflow
    • Applications
    • Pitfalls
    • Conclusions
    • Acknowledgements and Funding
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Similar Articles

Cited By...

More in this TOC Section

  • The impact of faults and fluid flow on seismic images of a relay ramp over production time
  • Faults as barriers or channels to production-related flow: insights from case studies
  • Introduction to the thematic set: Fault and top seals
Show more: Thematic set: Fault and top seals
  • Most read
  • Most cited
Loading
  • Discussion on ‘Fault seal modelling – the influence of fluid properties on fault sealing capacity in hydrocarbon and CO2 systems’, Petroleum Geoscience, 2020, https://doi.org/10.1144/petgeo2019-126
  • Two-step wireline log analysis of overpressure in the Bekapai Field, Lower Kutai Basin, Indonesia
  • Geoscience and decarbonization: current status and future directions
  • Mechanics of salt systems: state of the field in numerical methods
  • Structural evolution of the Breagh area: implications for carboniferous prospectivity of the Mid North Sea High, Southern North Sea
More...

Petroleum Geoscience

  • About the journal
  • Editorial Board
  • Submit a manuscript
  • Author information
  • Supplementary Publications
  • Subscribe
  • Pay per view
  • Alerts & RSS
  • Copyright & Permissions
  • Activate Online Subscription
  • Feedback
  • Help

Lyell Collection

  • About the Lyell Collection
  • Lyell Collection homepage
  • Collections
  • Open Access Collection
  • Open Access Policy
  • Lyell Collection access help
  • Recommend to your Library
  • Lyell Collection Sponsors
  • MARC records
  • Digital preservation
  • Developing countries
  • Geofacets
  • Manage your account
  • Cookies

The Geological Society

  • About the Society
  • Join the Society
  • Benefits for Members
  • Online Bookshop
  • Publishing policies
  • Awards, Grants & Bursaries
  • Education & Careers
  • Events
  • Geoscientist Online
  • Library & Information Services
  • Policy & Media
  • Society blog
  • Contact the Society

 

EAGE logo

Published by The Geological Society of London, registered charity number 210161

Print ISSN 
1354-0793
Online ISSN 
2041-496X

Copyright © 2021 EAGE/Geological Society of London