Skip to main content

Main menu

  • Home
    • Journal home
    • Lyell Collection home
    • Geological Society home
  • Content
    • Online First
    • Current issue
    • Past issues
    • Collections
    • Supplementary publications
    • Open Access
  • Subscribe
    • GSL fellows
    • Institutions
    • Corporate
    • Other member types
  • Info for
    • Authors
    • Librarians
    • Readers
    • Access for GSL Fellows
    • Access for other member types
    • Press office
    • Help
  • Alerts
    • eTOC alerts
    • Online First alerts
    • RSS feeds
    • Newsletters
    • GSL blog
  • Submit
  • Geological Society of London Publications
    • Engineering Geology Special Publications
    • Geochemistry: Exploration, Environment, Analysis
    • Journal of Micropalaeontology
    • Journal of the Geological Society
    • Lyell Collection home
    • Memoirs
    • Petroleum Geology Conference Series
    • Petroleum Geoscience
    • Proceedings of the Yorkshire Geological Society
    • Quarterly Journal of Engineering Geology and Hydrogeology
    • Quarterly Journal of the Geological Society
    • Scottish Journal of Geology
    • Special Publications
    • Transactions of the Edinburgh Geological Society
    • Transactions of the Geological Society of Glasgow
    • Transactions of the Geological Society of London

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Petroleum Geoscience
  • Geological Society of London Publications
    • Engineering Geology Special Publications
    • Geochemistry: Exploration, Environment, Analysis
    • Journal of Micropalaeontology
    • Journal of the Geological Society
    • Lyell Collection home
    • Memoirs
    • Petroleum Geology Conference Series
    • Petroleum Geoscience
    • Proceedings of the Yorkshire Geological Society
    • Quarterly Journal of Engineering Geology and Hydrogeology
    • Quarterly Journal of the Geological Society
    • Scottish Journal of Geology
    • Special Publications
    • Transactions of the Edinburgh Geological Society
    • Transactions of the Geological Society of Glasgow
    • Transactions of the Geological Society of London
  • My alerts
  • Log in
  • My Cart
  • Follow gsl on Twitter
  • Visit gsl on Facebook
  • Visit gsl on Youtube
  • Visit gsl on Linkedin
Petroleum Geoscience

Advanced search

  • Home
    • Journal home
    • Lyell Collection home
    • Geological Society home
  • Content
    • Online First
    • Current issue
    • Past issues
    • Collections
    • Supplementary publications
    • Open Access
  • Subscribe
    • GSL fellows
    • Institutions
    • Corporate
    • Other member types
  • Info for
    • Authors
    • Librarians
    • Readers
    • Access for GSL Fellows
    • Access for other member types
    • Press office
    • Help
  • Alerts
    • eTOC alerts
    • Online First alerts
    • RSS feeds
    • Newsletters
    • GSL blog
  • Submit

Linking capillary and mechanical seal capacity mechanisms

J. R. Underschultz
Petroleum Geoscience, 23, 3-9, 16 September 2016, https://doi.org/10.1144/petgeo2016-032
J. R. Underschultz
The University of Queensland, Centre for Coal Seam Gas, Brisbane, QLD 4072, Australia
  • Find this author on Google Scholar
  • Search for this author on this site
  • For correspondence: j.underschultz@uq.edu.au
PreviousNext
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Mechanical fault reactivation is a mechanism where high fluid pressures generated within a fault zone can change the effective stress such that an optimally orientated fault segment will rupture. This style of strain has been recognized in three settings: (1) deep crustal locations at greenschist and higher-grade metamorphism with fluid generation; (2) active plate boundaries where tectonic stresses can result in seismicity; and (3) hydrocarbon column buoyancy pressure reactivation of critically stressed fault-bound traps. This paper examines category 3 in the context of mechanical fault reactivation and capillary processes. For water-wetting fault rock, mechanical reactivation may be reached prior to the capillary seal capacity. However, the non-wetting fluid cannot access the fault rock pore space until the hydrocarbon column height reaches the capillary threshold pressure. At the threshold pressure, the non-wetting fluid enters the fault rock imparting a buoyancy pressure in excess of the mechanical reactivation threshold causing rupture. This suggests that in certain circumstances the mechanical fault reactivation by buoyancy pressure is more accurately predicted by the capillary threshold pressure than mechanical reactivation pressure.

  • © 2017 The Author(s)

INDIVIDUALS

Log in using your username and password

– GSL fellows: log in with your Lyell username and password. (Please check your access entitlements at https://www.geolsoc.org.uk/fellowsaccess)
– Other users: log in with the username and password you created when you registered. Help for other users is at https://www.geolsoc.org.uk/lyellcollection_faqs
Forgot your username or password?

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.

LIBRARY USERS

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.
If you think you should have access, please contact your librarian or email sales@geolsoc.org.uk

LIBRARIANS

Administer your subscription.

CONTACT US

If you have any questions about the Lyell Collection publications website, please see the access help page or contact sales@geolsoc.org.uk

PreviousNext
Back to top

In this issue

Petroleum Geoscience: 23 (1)
Petroleum Geoscience
Volume 23, Issue 1
February 2017
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Back Matter (PDF)
  • Front Matter (PDF)
Alerts
Sign In to Email Alerts with your Email Address
Citation tools

Linking capillary and mechanical seal capacity mechanisms

J. R. Underschultz
Petroleum Geoscience, 23, 3-9, 16 September 2016, https://doi.org/10.1144/petgeo2016-032
J. R. Underschultz
The University of Queensland, Centre for Coal Seam Gas, Brisbane, QLD 4072, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: j.underschultz@uq.edu.au

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Permissions
View PDF
Share

Linking capillary and mechanical seal capacity mechanisms

J. R. Underschultz
Petroleum Geoscience, 23, 3-9, 16 September 2016, https://doi.org/10.1144/petgeo2016-032
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Email to

Thank you for sharing this Petroleum Geoscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Linking capillary and mechanical seal capacity mechanisms
(Your Name) has forwarded a page to you from Petroleum Geoscience
(Your Name) thought you would be interested in this article in Petroleum Geoscience.
Print
Download PPT
  • Tweet Widget
  • Facebook Like
  • Google Plus One
  • Article
    • Abstract
    • Mechanical fault reactivation and fluid pressure
    • Capillary fault seal and fluid pressure
    • Capillary and mechanical fault seal linkage
    • Discussion of real faults
    • Conclusions
    • Acknowledgements and Funding
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Similar Articles

Cited By...

More in this TOC Section

  • Fault reactivation in travertine and its impact on hydraulic transmissibility: laboratory experiments and mesoscale structures
  • Do deformation bands matter for flow? Insights from permeability measurements and flow simulations in porous carbonate rocks
  • The impact of faults and fluid flow on seismic images of a relay ramp over production time
Show more: Thematic Set: Fault and top seals
  • Most read
  • Most cited
Loading
  • The geochemistry of oil in Cornish granites
  • Principles of sustainability and physics as a basis for the low-carbon energy transition
  • Object-based modelling of avulsion-generated sandbody distributions and connectivity in a fluvial reservoir analogue of low to moderate net-to-gross ratio
  • Do deformation bands matter for flow? Insights from permeability measurements and flow simulations in porous carbonate rocks
  • Pressure constraints on the CO2 storage capacity of the saline water-bearing parts of the Bunter Sandstone Formation in the UK Southern North Sea
More...

Petroleum Geoscience

  • About the journal
  • Editorial Board
  • Submit a manuscript
  • Author information
  • Supplementary Publications
  • Subscribe
  • Pay per view
  • Alerts & RSS
  • Copyright & Permissions
  • Activate Online Subscription
  • Feedback
  • Help

Lyell Collection

  • About the Lyell Collection
  • Lyell Collection homepage
  • Collections
  • Open Access Collection
  • Open Access Policy
  • Lyell Collection access help
  • Recommend to your Library
  • Lyell Collection Sponsors
  • MARC records
  • Digital preservation
  • Developing countries
  • Geofacets
  • Manage your account
  • Cookies

The Geological Society

  • About the Society
  • Join the Society
  • Benefits for Members
  • Online Bookshop
  • Publishing policies
  • Awards, Grants & Bursaries
  • Education & Careers
  • Events
  • Geoscientist Online
  • Library & Information Services
  • Policy & Media
  • Society blog
  • Contact the Society

 

EAGE logo

Published by The Geological Society of London, registered charity number 210161

Print ISSN 
1354-0793
Online ISSN 
2041-496X

Copyright © 2019 EAGE/Geological Society of London